Gab1 contributes to cytoskeletal reorganization and chemotaxis in response to platelet-derived growth factor.
نویسندگان
چکیده
Gab1 is a scaffolding/docking protein that has been suggested to play a role in signal transduction downstream of certain plasma membrane receptors, including platelet-derived growth factor (PDGF) receptors. We found that PDGF induced a rapid Gab1 phosphorylation, which depended on the recruitment of Grb2, indicating that Grb2 acts as a bridge between Gab1 and the PDGF beta-receptor. PDGF also enhanced the binding of Gab1 to the phosphatase SHP-2, but not to p85. To further study the role of Gab1 in PDGF signaling, we transfected porcine aortic endothelial cells with a doxycycline-inducible Gab1 construct. Increased Gab1 expression enhanced the recruitment and activation of SHP-2, as well as the phosphorylation of the mitogen-activated protein kinases Erk and p38 by PDGF. Gab1 expression also enhanced the formation of lamellipodia and cellular protrusions. In Gab1-deficient mouse embryonic fibroblasts, the same phenotype was induced by restoring the expression of wild-type Gab1, but not a mutant Gab1 that was unable to associate with SHP-2. These effects of PDGF on the actin cytoskeleton were not altered by the inhibition of p38 or Erk, but could be blocked by a dominant-negative form of Rac (Asn(17)). Finally, Gab1-deficient fibroblasts showed a decreased chemotactic response toward gradients of PDGF as compared with wild-type cells. In conclusion, Gab1 plays a selective role in the regulation of the mitogen-activated protein kinases Erk and p38 downstream of the PDGF beta-receptor, and contributes to cytoskeletal reorganization and chemotaxis in response to PDGF.
منابع مشابه
Ligand-induced recruitment of Na+/H+-exchanger regulatory factor to the PDGF (platelet-derived growth factor) receptor regulates actin cytoskeleton reorganization by PDGF.
Proteins interacting with the human PDGF (platelet-derived growth factor) beta-receptor were isolated using immobilized peptides derived from the receptor C-terminus as a bait. We identified two PDZ domain proteins, namely NHERF (Na(+)/H(+) exchanger regulatory factor, also called EBP50) and NHERF2 (E3KARP, SIP-1, TKA-1), which have been shown previously to associate with the murine PDGF recept...
متن کاملPhosphatidylinositol 3-kinase-independent signal transduction pathway for platelet-derived growth factor-induced chemotaxis.
Platelet-derived growth factor (PDGF)-BB is a potent chemoattractant for mesenchymal cells. Intracellular signal transduction for PDGF-induced chemotactic response has been reported to be dependent on phosphatidylinositol 3-kinase (PI3K) activation. Here, we report a PI3K-independent pathway operating for PDGF-induced chemotaxis in vascular smooth muscle cells and other cell types. Two differen...
متن کاملModulation of PDGF Receptor Signaling via the Phosphatase SHP-2 and the Docking Protein Gab1
Kallin, A. 2003. Modulation of PDGF receptor signaling via the phosphatase SHP-2 and the docking protein Gab1. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1300 . 69 pp. Uppsala. ISBN 91-554-5780-0 Platelet-derived growth factors (PDGF) constitute a family of potent mitogens and chemoattractants for cells of mesenchymal origin, wh...
متن کاملB-type receptor for platelet-derived growth factor mediates a chemotactic response by means of ligand-induced activation of the receptor protein-tyrosine kinase.
Porcine aorta endothelial cells are devoid of receptors for platelet-derived growth factor (PDGF). We have transfected such cells with cDNA for the PDGF B-type receptor, both the wild-type receptor and a mutant form of the receptor (K634A), in which the putative nucleotide-binding lysine of the protein-tyrosine domain has been changed to alanine. Immunoprecipitation studies of metabolically lab...
متن کاملDirectional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts.
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 17 شماره
صفحات -
تاریخ انتشار 2004